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Abstract: The elevational patterns of plant 3 diversity and their underlying drivers are
known to be scale-dependent, but pinpointing the spatial scales at which different ecological
processes occur remains challenging using traditional field inventory methods. Remote
sensing has emerged as a promising alternative, providing continuous spatial data for
monitoring plant diversity. In this study, we used field inventory data and corresponding
Sentinel-2 images from a subtropical mountain to simulate pooled assemblages and assess
the potential of using multispectral satellite images in predicting tree 3 diversity. We
further examined the scale-dependent elevational gradient of the spectral 3 diversity
and identified primary topographic variables across different spatial extents (0.16-64 ha).
The spectral 3 diversity showed a consistently positive relationship with the inventory 3
diversity calculated using various indices (average pairwise Serensen, Jaccard, and Bray-
Curtis dissimilarities, as well as multi-community differentiation measures based on Hill
numbers), with the strongest correlation observed for abundance-weighted indices and
images from early spring and late autumn (Rzmax = 0.63). However, a null model-derived
3 deviation showed only a weak correlation between remote sensing and field-based
measures. A declining trend in the spectral 3 diversity with an increasing elevation was
observed and became more pronounced at larger extents. The topographic heterogeneity,
represented by the slope and northness, explained the elevational gradients at spatial
extents >4 ha, attesting the significant role of environmental filtering in shaping plant
diversity patterns, even at fine scales. While the northness was more influential at smaller
spatial extents (<4 ha), the slope had a stronger impact at broader spatial extents (>4 ha).
This study showcases the potential of using readily available remote sensing data to address
difficult questions in plant diversity research.

Keywords: beta diversity; community ecology; community composition; elevational
gradient; environmental heterogeneity; multispectral remote sensing; spectral diversity
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1. Introduction

Changes in the (3 diversity, which reflects the variation in the species composition
among different localities within a region, are a striking signature of biodiversity [1].
Understanding how the (3 diversity varies along ecological gradients and through time is
crucial for unraveling the spatiotemporal patterns of biodiversity [2-4]. Despite intensive
investigations over the past few decades [5-10], the patterns and mechanisms driving tree
[ diversity along key ecological gradients, such as the latitude and altitude, remain elusive.
These gradients encompass a range of environmental factors that significantly influence
the species distribution and community composition, yet the intricate processes driving
these patterns are not fully understood.

Previous studies have demonstrated that the latitudinal and elevational gradients of
tree (3 diversity are spatial scale-dependent [7,9,11-13]. When calculated for small spatial
extents (e.g., <500 m), the tree 3 diversity may show significant or insignificant trends along
ecological gradients, sparking debate about the roles of community assembly processes
like environmental filtering and dispersal limitation in shaping these patterns [6,14-18].
However, several studies have provided unambiguous evidence that the tree 3 diversity
at broader spatial extents (e.g., >7 km) varies significantly, albeit non-monotonically, with
both the latitude [7,12] and altitude [11]. These non-monotonic patterns can largely be
explained by environmental heterogeneity, represented by spatial variation in the climate
and soil [7,12,13]. Despite this progress, it remains unclear at what spatial scales the {3
diversity shows systematic trends and how environmental factors act across different scales
to shape 3 diversity patterns.

Addressing this challenge using traditional field inventory methods is difficult due to
the challenges of acquiring spatially continuous data. Typically, field inventories are only
conducted in spatially dispersed localities, and broader spatial extents are examined by
grouping nearby samples. For example, Tello et al. [11] studied regional communities by
grouping 10 local plots near each other at similar elevations to study the scale dependence
of the elevational gradient of tree {3 diversity. These regional communities covered regions
extending over 19 km. Along the latitudinal gradient, Xing and He [7] employed a similar
approach, grouping forest inventory plots from extensively sampled North American
forests to examine regional communities with minimum spatial extents greater than 7 km.
However, it remains difficult to infer from this approach how p diversity patterns and
their responses to the environment change with spatial extents spanning from a few
hundred meters to several kilometers, spatial scales that are crucial for considering in forest
conservation and management in fragmented landscapes [19].

Recently, emergent spectral diversity measures derived from optical remote sensing
have provided a promising alternative for studying scale dependence along latitudinal and
elevational f diversity gradients [20]. Remote sensing addresses many of the limitations of
traditional field-based methods, including their labor and resource demands, heterogeneity
in terms of data quality, and challenges in their large-scale deployment [21,22]. Several
studies have tested the association between spectral diversity and various measures of
taxonomic diversity calculated from field inventory data [23-26]. However, few studies
have integrated remote sensing with ecological theory to consider ecological processes [27].
Moreover, limited attempts have been made to study tree 3 diversity using spectral data,
with mixed results on whether the spectral 3 diversity can serve as a proxy for the observed
tree 3 diversity. For instance, earlier studies quantified the spectral 3 diversity using the
variation in specific spectral indices such as the Normalized Difference Vegetation Index
(NDVI), finding weak correlations between the spectral and plant 3 diversity [28,29]. This
was likely because the NDVI uses only two spectral bands and saturates with moderate-
to-dense canopies [30]. Recent studies, however, have shown that wavelength regions
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beyond those used to calculate the NDVI (e.g., red edge and shortwave infrared) are
important for predicting plant diversity [25,31]. New methods that make full use of all
the available wavelength bands [32,33] have primarily been tested with hyperspectral
data across contrasting vegetation types, e.g., in [24,34]. It remains to be demonstrated
whether these methods can predict the tree 3 diversity in closed-canopy forests using
readily available multispectral satellite data like those from Sentinel-2.

In this study, we integrated multitemporal and multispectral reflectance data from
Sentinel-2 with forest inventory data from 58 plots along a subtropical elevational gradient
in eastern China to achieve two main objectives. First, we tested the association between
the spectral (3 diversity and various (3 diversity measures derived from the inventory
data, using a method developed by Laliberté et al. [33] to quantify the spectral 3 diversity.
This method was applied to individual images acquired in different seasons, as well as to
stacked images taken across seasons and a full year, to assess the potential contribution of
phenology [25]. Second, we used the Sentinel-2 data to assess the spatial-scale dependence
in the elevational gradient of the spectral 3 diversity, focusing on the topographic drivers
shaping these patterns. To achieve this objective, we tested two specific hypotheses. Based
on previous observations of a lack of elevational 3 diversity gradients at small extents
(e.g., 50 m [6,11]) and evidence of such gradients at large extents (e.g., 19 km [11]), we
hypothesized that the elevational gradient of the spectral 3 diversity would be weak at
smaller spatial extents, with a threshold beyond which a strong association between the
spectral 3 diversity and elevation would emerge (Hypothesis 1). Furthermore, inspired by
similar studies on latitudinal § diversity gradients [7,12], we hypothesized that the stronger
elevational gradients at larger spatial extents would primarily result from environmental
filtering. Given that topographic variables such as the slope and aspect are closely linked
to the microclimate and soil nutrients—factors known to influence the plant community
composition [35,36]—we predicted that any observed elevational gradient of the spectral 3
diversity could be explained by the topographic heterogeneity (Hypothesis 2).

2. Materials and Methods
2.1. Study Area and Field Survey

This study was conducted in the Tianmu National Nature Reserve, located in Zhejiang
province, eastern China (30°18'30”-30°21'37" N, 119°24'11”-119°27'11" E). The reserve
covers approximately 4300 ha and features an elevational gradient from 400 to 1506 m
above sea level. The region’s annual mean temperature ranges from 8.8 to 14.5 °C, and
the annual precipitation varies between 1390 and 1870 mm [37]. The reserve is covered by
140-year-old natural evergreen and deciduous broad-leaved forests and its predominant
composition transitions between evergreen broad-leaved forests, mixed forests of evergreen
and deciduous broad-leaved species, and deciduous broad-leaved forests with an increasing
elevation [38]. Approximately 90% of the area consists of volcanic rock, and the zonal soils
vary with the elevation: red soils dominate below 600 m in elevation, yellow soils occur
between 600 and 1200 m in elevation, and brown-yellow soils are found above 1200 m in
elevation.

Between 2017 and 2021, we established a total of 58 standard forest plots across the re-
serve (Figure S1). Each plot was a 20 x 20 m square, with the coordinates of the four corners
recorded using a high-precision GeoXH 3000 handheld GPS (Trimble Inc., Sunnyvale, CA,
USA). Within each plot, all woody plants with a diameter at breast height (DBH) > 1 cm
were tagged, measured, and identified based on their species [39]. To allow for the use
of spectral data, which are mostly relevant to forest canopies [25], we only analyzed trees
with a DBH > 10 cm. Our dataset included 2783 individuals from 137 species, spanning
80 genera and 42 families. The most species-rich families were Fagaceae, Rosaceae, and
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Lauraceae, together representing 38 species and accounting for 33% of all individuals. The
most abundant species, in descending order, were Quercus myrsinifolia Blume (Fagaceae),
Cunninghamia lanceolata (Lamb.) Hook. (Cupressaceae), Carpinus viminea Lindl. ex Wall.
(Betulaceae), Daphniphyllum macropodum Miq. (Daphniphyllaceae), Liquidambar formosana
Hance (Altingiaceae), Quercus ciliaris C.C.Huang & Y.T.Chang (Fagaceae), and Lithocarpus
brevicaudatus (Skan) Hayata (Fagaceae), each with more than 100 individuals.

2.2. Sentinel-2 Spectral Reflectance Data

Sentinel-2 satellites provide high-resolution multispectral imagery with global cov-
erage and a revisit time of five days. They capture spectral information across 13 bands,
with their ground sampling resolutions ranging from 10 to 60 m. These include three
visible bands (B02—blue; B03—green; B04—red) and one near-infrared band (B08) at a
10 m resolution and three vegetation red edge bands (B05, BO6, B07), one narrow near-
infrared band (BO8A), and two shortwave infrared bands (B11, B12) at a 20 m resolution.
Additionally, three coarser bands (B01—coastal aerosols; B0O9—water vapor; B10—cirrus)
at a 60 m resolution record coastal aerosol, water vapor, and cirrus data. We used the ten
pre-processed Level-2A (bottom-of-atmosphere reflectance in cartographic geometry [40])
bands at 10 m and 20 m resolutions (Table S1), with the coarser bands resampled to 10 m
resolutions using bilinear interpolation.

Given a nominal absolute geolocation accuracy of approximately 12 m at 95% confi-
dence [41], we tested five coordinates (four corners and the centroid) when extracting the
spectral data for each plot. Consistent with previous work predicting the tree « diversity in
the same region [25], we found that data extracted from the northwest corners provided
the best match between the ground and remote sensing data, and these coordinates were
used for subsequent analyses.

We downloaded all the Sentinel-2 Level-2A surface reflectance imagery with less than
15% cloud coverage for the study region, acquired between 2019 and 2022, from Google
Earth Engine. Each image was further examined for pixels overlapping our field plots using
the built-in scene classifier. Images with over 15% non-vegetation pixels in 15 m buffer
zones surrounding the plot coordinates were excluded. To address the minimal cloud cover
in the remaining images, the cloud pixels were filled with the mean reflectance of the exact
same pixels from other, cloud-free images taken in the same month. This process initially
resulted in 55 usable images, with 2 additional images included after visual checks for
misclassifications, yielding 57 images for analysis. Only 14 of the 57 images had minimal
cloud pixels (average of 7%, range of 2%-14%), which were imputed using the method just
mentioned. The other images used in our analysis were cloud-free. Hence, the influence
of the imputation method on our results was negligible. The relationship between the
acquisition season and vegetation phenology, which might explain the link between the
spectral and inventory diversity, is summarized in Table 1, while the exact acquisition dates
can be found in Table S2.

Table 1. Season of image acquisition and its relation to the vegetation phenology, contributing to the
association between the spectral and inventory plant diversity in the study region.

Season Vegetation Phenology
Early spring (March—April) Bud breaking and initial leaf sprouting
Late spring (May) Leaf expansion and flowering
Summer (June-August) Growing season/peak greenness
Early autumn (September) Initial defoliation
Late autumn (October-November) Leaf senescence and defoliation

Winter (December—February) Dormant phase/evergreen persistence
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2.3. Strength of Association Between Spectral and Inventory B Diversities

To assess the strength of the association between the spectral and inventory 3 diversi-
ties, we simulated a sampling process by randomly selecting subsets of the 58 field plots to
form pooled assemblages. This simulation was repeated 1000 times to generate different
pooled assemblages. For each pooled assemblage, we calculated a set of indices of the
inventory {3 diversity and a spectral 3 index (see below). The coefficient of determination
(R?) for simple linear regressions between the spectral § index and each inventory B index
across the 1000 repetitions was used to quantify the strength of their association. Recogniz-
ing that the 3 diversity, as a composite concept, is influenced by factors such as the species
spatial aggregation, species pool size, and species abundance distribution [6,42], we also
calculated a standardized 3 deviation for each 3 measure using a randomization-based
null model to isolate the spatial component of the 3 diversity [6]. The strength of the
association between the spectral and inventory 3 deviations was similarly quantified using
the coefficient of determination. To assess the robustness of our results, we tested different
sample sizes (i.e., the number of local communities in a pooled assemblage, N =5, 10, 15, 20,
25, 30, 35, 40, 45, and 50) and found that the strength of the association initially increased
and then plateaued with an increasing sample size (Figure S52). Therefore, we report the
results for N = 40 in the main text.

The spectral 3 diversity was quantified using the framework developed by Laliberté
et al. [33], which measures the spectral diversity as the spectral variance of the 3-D re-
flectance data cube and additively partitions the overall (y) spectral diversity of a pooled
assemblage into o (within local communities) and 3 (among local communities) com-
ponents, following the spirit of a classical analysis of variance (ANOVA). Following the
recommendation of Laliberté et al. [33], for each reflectance data cube, we performed a
principal component analysis (PCA) with type-I scaling to reduce the data dimensionality,
selecting the leading principal components (PCs) that explained up to 99% of the total
spectral variation to calculate the spectral diversities. This was first performed for each
individual image and then for stacked images comprising images from different seasons
within a year (i.e., from March to May for spring, June to August for summer, September
to November for autumn, and December to February for winter) or comprising all the
images taken within a year. Since the spectral 3 diversity calculated from the single images
acquired in early spring and late autumn showed a stronger association with the inventory
f diversity, we also produced two additional stacked images representing early spring
(March to April) and late autumn (October to November) to assess whether these could
provide better predictions of the 3 diversity than the single images.

We evaluated the effectiveness of using the spectral 3 diversity in predicting two
sets of widely used 3 measures calculated from the inventory data. The first set was
the averages of dissimilarity indices over all the pairwise local communities within a
pooled assemblage, including the Serensen, Jaccard, and Bray—Curtis indices. These indices
are of the same type as the spectral 3 index described above, as all of them essentially
quantify the 3 diversity using the variance among local communities [33,43]. The second
set included six multi-community differentiation measures based on Hill numbers. Three
Serensen-type measures quantified the effective average proportion of a local community’s
species not shared across all the communities, with values of 4 =0, 1, and 2 representing
different weights for the species abundance [44]. Three Jaccard-type measures quantified
the effective average proportion of the pooled assemblage’s species not shared across all the
local communities, with values of g = 0, 1, and 2 having the same meaning as above. These
six measures unify many classical measures of 3 diversity. For instance, the Jaccard-type
measure with a value of 4 = 0 is simply the widely used “proportional species turnover”
metric [45], a monotonic transformation of Whittaker’s multiplicative 3 [1].
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We used the null model proposed by Kraft et al. [6] to calculate the inventory 3 devia-
tion. For each pooled assemblage, we randomly shuffled all individuals while preserving
the abundance of each species and the number of individuals in each local community.
From 999 iterations of the null model, we calculated the inventory (3 deviation for each of
the nine inventory [3 indices as the difference between the observed and mean expected 3
diversity, divided by the standard deviation of the expected 3 diversity. We then extended
this null model to calculate the spectral 3 deviation by randomly shuffling the spatial loca-
tions of all the pixels in a pooled assemblage. The randomization was repeated 999 times to
obtain the spectral 3 deviation using a similar method as that for obtaining the inventory 3
deviation (i.e., (observed — mean)/(SD)).

2.4. Scale-Dependent Elevational Gradient of Spectral B Diversity

All the analyses described in this section were based on the Sentinel-2 image acquired
on 31 October 2019, which provided one of the best predictions of the inventory 3 diversities.
We also tested several other images that performed similarly in predicting the inventory
3 diversity, and the results were qualitatively similar (Figures S3 and S4), indicating
robustness to the choice of images. The image was divided into a grid of 20 x 20 m cells,
corresponding to the scale of the local communities for which we had collected field data.
The cells were then grouped into “landscape units” with equal areas using a neighboring,
non-overlapping principle, where each cell belonged to only one landscape unit, and
nearby cells were grouped into the same landscape unit (Figure S5). For each landscape
unit, the spectral (3 diversity was calculated following the same procedure as described in
the previous section. To investigate the scale dependence in the elevational gradient of the
spectral (3 diversity, we considered 11 different spatial extents when defining the landscape
units, ranging from 0.16 ha (4 cells of 20 x 20 m) to 64 ha (Figure S5). Local communities
where not all the constituent pixels were classified as vegetation were excluded, and
the remaining local communities were used to calculate the spectral 3 diversity for each
landscape unit.

For the analysis of topographic variables, we used a Digital Elevation Model (DEM)
derived from Advanced Land Observing Satellite/Phased Array type-L band Synthetic
Aperture Radar (ALOS/PALSAR) data acquired on 3 January 2008 with a spatial resolution
of 12.5 m. Three topographic variables were calculated: the elevation, slope, and aspect. The
aspect values were sine- and cosine-transformed to represent the eastness and northness,
respectively. The standard deviation was calculated for each topographic variable for each
landscape unit generated as described above.

We used partial regressions to partition the variation in the 3 diversity for each
spatial extent into four components: (a) variation uniquely explained by the elevation,
(b) variation jointly explained by the elevation and topographic heterogeneity, (c) variation
uniquely explained by the topographic heterogeneity, and (d) the unexplained portion.
The proportion of the variation explained by the topographic heterogeneity was further
partitioned into the portions of the variation explained by different variables. The mean
elevation of each landscape unit, together with its quadratic and cubic terms, addressing
the visually observable nonlinear patterns, was used to model the elevational patterns.
The variables representing the topographic heterogeneity included the standard deviation
of the elevation, slope, and sine- and cosine-transformed aspect values for a landscape
unit. The local variation in the elevation and eastness exhibited a negligible contribution
to the spectral 3 diversity across all the spatial extents. Thus, the results of the variation
partitioning presented in the main text only incorporate the standard deviation of the slope
and northness as variables representing the topographic heterogeneity.

All statistical analyses were conducted in R version 4.0.5 (R Core Team, 2021) [46].
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3. Results
3.1. Strength of Association Between Spectral and Inventory B Diversity

The spectral 3 diversity was an effective predictor of the inventory {3 diversity, al-
though the strength of this relationship varied by the season. The strongest correla-
tions between the spectral and inventory (3 diversity indices were observed in single
images acquired in early spring (March to April) and late autumn (October to November)
(Figure 1a). This pattern was consistent across various combinations of stacked images
(Figures 1b and S6).

(a) Sinale image

Pairwise 3 measures Multi-community B measures
Apr. Apr.
May. Mar. May. Mar.
Jun. Feb. Jun: Feb.
Jul. Jan. Jul. Jan.
0.
Aug. Dec. Aug. Dec.
05 0.
Sep. 07 Nov. Sep. o
Oct. Sgrensen, q Oct. Jaccard, q
Sgrensen ——Jaccard ——Bray—Curtis 04142 0-—&8-1-8-2
(b) Stacked images
- - Pairwise Sgrensen 0.35
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] [ ] Pairwise Bray—Curtis 03

] I Mutti-community Serensen, =0 | (.25
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>
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Figure 1. Season-dependent association between various indices of inventory (3 diversity and
spectral (3 diversity. (a) Coefficient of determination (R?) was calculated from single images. (b) Mean
coefficient of determination (R?) across four years (2019, 2020, 2021, and 2022) for various intra-annual
combinations of stacked images. Abbreviations: ESpr, early spring; LAut, late autumn.

The association between the spectral and inventory 3 diversity also varied depending
on the type of inventory 3 diversity index used. The spectral 3 diversity was more
strongly correlated with abundance-based f indices (Figure 2, average R? = 0.51 for the
best-performing image) compared to occurrence-based B indices (average R? = 0.23). Multi-
community differentiation measures with a value of g = 2 showed the strongest association
with the spectral B diversity (R? = 0.63 for the Serensen-type measure and R? = 0.61 for
the Jaccard-type measure). In contrast, the spectral 3 deviation did not perform well in
predicting the inventory 3 deviation indices (Figure 3).
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Figure 2. Relationships between spectral 3 diversity and various indices of inventory 3 diversity,
derived from one of best-performing single images (31 October 2019). Blue dots show spectral (3
diversity in each simulated pooled assemblage. Black lines are significant fitted linear regression
between spectral B diversity and inventory f diversity. Corresponding R? for each regression is
also shown.

3.2. Scale-Dependent Elevational Patterns and Drivers of Spectral B Diversity

The spectral 3 diversity consistently decreased with the elevation across all the studied
spatial extents, although this relationship was nonlinear (Figure 4). The strength of the
relationship increased with larger spatial extents, with the R? values ranging from 0.24 at
0.16 ha to 0.71 at 64 ha (Figure 4). One could argue that the observed strengthening of
the relationship between the spectral 3 diversity and elevation with an increasing spatial
extent was an artifact due to the reduced sample size at broader spatial extents. However,
this is not true. For instance, randomly subsampling 10 data points from Figure 4a, each
representing the spectral 3 diversity calculated for a landscape unit of 0.16 ha, to refit
the trend resulted in an association of a similar strength, as reported in the figure (the
mean adjusted R? and 95% CI from 100 repetitions were 0.14 and —0.16 to 0.35). Therefore,
the increase in the R? with the spatial extent cannot be attributed to the decrease in the
sample size. The elevation and topographic heterogeneity together explained 24% to 85%
of the variation in the spectral 3 diversity across the spatial extents examined (Figure 5).
Approximately 20% of the variation in the spectral § diversity at all extents was attributed
uniquely to the elevation.
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Figure 3. Relationship between spectral 3 deviation and inventory {3 deviation across various
indices, derived from one of best-performing single images (31 October 2019). Blue dots show spectral
{3 deviation in each simulated pooled assemblage. Black lines are significant fitted linear regression
between spectral § deviation and inventory B deviation. Corresponding R? for each regression is
also shown.

The increased strength of the elevational gradient in the spectral 3 diversity at larger
spatial extents was primarily driven by the topographic heterogeneity, represented by the
slope and northness. Their contribution, along with that of the elevation, to the spectral 3
diversity increased from ~3% at the smallest extent (0.16 ha) to over 50% at the largest extent
(64 ha). For about half of this proportion, the variation explained ([b3] in Figure 5) was
indistinguishable between the slope and northness. At smaller spatial extents (0.16-2.56 ha),
the unique contribution of the northness to the elevational gradient ([b1] in Figure 5) was
greater than that of the slope, while the slope became more influential at larger extents
(4.84-64 ha). The unique contribution of the topographic heterogeneity, independent of the
elevation, was negligible across all the spatial extents.
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Figure 4. Elevational trends in the spectral 3 diversity calculated at different spatial extents, derived
from one of the best-performing single images (31 October 2019). The blue dots show the spectral 3
diversity within each landscape unit at different spatial extents. Fitted cubic regression lines with

their corresponding R? values are shown to illustrate the trends.
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Figure 5. Proportions of the variation in the spectral 3 diversity explained by the elevation and
topographic heterogeneity for landscape units at different spatial extents, derived from one of the best-
performing single images (31 October 2019). [a] Variation explained by the elevation only; [b1] shared
variation explained by the elevation and the standard deviation of the northness; [b2] shared variation
explained by the elevation and the standard deviation of the slope; [b3] shared variation explained
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by the elevation, the standard deviation of the northness, and the standard deviation of the slope;
[c1] variation explained by the standard deviation of the northness only; [c2] variation explained by
the standard deviation of the slope only; [c3] shared variation explained by the standard deviation of
the northness and the standard deviation of the slope; [d] unexplained variation.

4. Discussion

The scale dependence of 3 diversity patterns along latitudinal and altitudinal gradients
has been well established. Recent studies have emphasized the role of environmental
heterogeneity in shaping patterns of (3 diversity, especially over broad spatial extents.
However, its role at smaller spatial scales is debated, and the threshold beyond which the
effect of environmental heterogeneity becomes detectable remains uncertain. In this study,
we leveraged remote sensing data to address these gaps.

4.1. Strength of Association Between Spectral and Inventory B Diversity

Our study demonstrated that Sentinel-2 multispectral imagery effectively predicted
the canopy tree 3 diversity, though this predictability varied with both the season of data
acquisition and the type of 3 diversity index used. We found that the spectral 3 diversity
from images captured in early spring and late autumn exhibited the strongest correlations
with the inventory 3 diversity. This suggests that interspecific phenological differences are
key in linking remote sensing data with biodiversity patterns, particularly in ecosystems
with pronounced seasonality [25,26,47-50]. These results align with previous findings
that remote sensing data from the start and end of growing seasons [25,51,52] best predict
plant diversity. The study region is characterized by mixed evergreen and deciduous
broad-leaved forests. During these transitional seasons, phenological asynchronies, such as
differences in the timing of sprouting, flowering, greening, and defoliating, can enhance
the detection of interspecific differences in the canopy tree species [48,49,53]. For exam-
ple, some species may sprout, flower, or lose their leaves earlier than others, leading to
distinctly different chlorophyll absorption rates, water moisture, and leaf biomass among
species [54]. By contrast, the peak greenness in summer leads to reduced spectral variation
among species, limiting the ability of multispectral channels to capture biodiversity signals.
The poor performance of winter imagery may be attributed to the characteristics of the
study region, which is dominated by a mix of evergreen and deciduous broad-leaved
forests. Deciduous species have already shed their leaves during winter, which hinders the
ability of remote sensing data to effectively capture the spectral variation of these species.
However, it should be noted that the seasonal dependence of the relationship between
the spectral diversity and tree diversity may also rely on the ecosystem. For example,
Maeda et al. [55] demonstrated that the relationship between remote sensing data and
plant diversity depended on the precipitation patterns in Kenya, with greater predictive
power observed when using imagery from the dry season but a weak correlation for the
wet season imagery.

It is no surprise that the spectral 3 diversity correlated more strongly with abundance-
based inventory {3 indices than with occurrence-based indices. This parallels earlier work
on « diversity, where abundance-weighted o metrics like Shannon’s and Simpson’s metrics
were found to be more reliably predicted from remote sensing data than the species
richness [23,25,26,56,57]. The multi-community 3 diversity measures with a value of g = 2
showed the strongest correlation with the spectral 3 diversity, likely because these indices
place more emphasis on common species. The spectral 3 diversity measure used in this
study, like many other spectral diversity indices, treated each individual, not species,
equally. Future studies may develop and test new spectral 3 diversity measures that
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take into account uneven species abundance distributions, if the aim is to predict the
incidence-based 3 diversity.

While (3 deviation metrics are frequently used to isolate the spatial aggregation compo-
nent of the (3 diversity [6,42], our spectral 3 deviation, based on randomized pixel shuffling,
had only a weak relationship with the inventory-based 3 deviation. This was likely due to
a mismatch in the spatial scale: remote sensing pixels represent 10 x 10 m areas, containing
an average of 12 (range: 3-50) individual trees in our dataset. As such, the spectral 3 devia-
tion failed to incorporate spatial aggregation at scales smaller than 10 m, including a major
range of scales at which strong spatial aggregation is often detected for tree species [58].
High-resolution (e.g., UAV-based) imagery or hyperspectral remote sensing technology
can be incorporated in the future to further evaluate the potential of remote sensing in
capturing the 3 deviation.

4.2. Scale-Dependent Spatial Patterns and Drivers of Spectral B Diversity Along
Elevation Gradient

Our study confirmed that the spectral 3 diversity decreased with the elevation, a
pattern consistent with previous research based on inventory data [6,11,15,59]. However,
these earlier studies were often limited to a single or few arbitrary sampling extents,
leaving questions regarding the role of environmental filtering unresolved. By leveraging
the continuous nature of satellite remote sensing data, we revealed that the association
between the topographic heterogeneity and spectral 3 diversity strengthened as the spatial
extent increased. This association contributed more than 50% to explaining the elevational
gradient of the spectral 3 diversity for spatial extents as small as 4 ha, highlighting the
significant role of environmental filtering in shaping the canopy tree distribution along an
elevational gradient.

Our results further identified two local topographic features, the slope and northness,
as drivers of the 3 diversity. Interestingly, the relative importance of these factors was scale-
dependent. At smaller spatial extents (0.16-2.56 ha), the northness emerged as the dominant
factor, likely due to the pronounced effects of microclimatic variation. The differential
exposure to light, temperatures, and moisture between north- and south-facing slopes
creates distinct ecological niches. For instance, south-facing slopes, being warmer and drier,
support sun-tolerant, drought-resistant species, while cooler, more humid north-facing
slopes favor shade-tolerant species [60]. This microclimatic variation explains the observed
influence of the northness on the tree community structure at finer spatial scales [61].

As the spatial extent increased, the slope overtook the northness as the more important
driver of the 3 diversity. This shift may have been linked to the soil nutrient distribution, as
steeper slopes often experience erosion and nutrient runoff, leading to poorer soil conditions.
Previous studies [36,62,63] have demonstrated that the slope significantly affects species
distributions, particularly at larger spatial scales, where soil nutrient variation becomes
more pronounced. Our results align with this perspective, suggesting that the slope is a
key factor shaping the tree community composition at broader spatial extents. We note
that the topographic variables used in this study were derived from ALOS/PALSAR data,
which may have been affected by the canopy height and biased our estimation of the
contribution of these variables. Nevertheless, the spatial extent of the landscape units
analyzed in this study was mostly much greater than the typical canopy height in the
study region, suggesting that the influence of this may not have been large. Future studies
could use more accurate digital terrain model products such as those derived using LiDAR
techniques to confirm our findings.

The influence of the topographic heterogeneity on the spectral (3 diversity became
negligible at fine scales but significantly increased at broader scales. This scale threshold is
consistent with findings from previous studies. Mori et al. [15] showed a positive correlation
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between the 3 diversity at spatial extent of about 400 m and the elevation, suggesting effects
from local processes. Tello et al. [11] found that local processes play a negligible role in
shaping the elevational gradients of the 3 diversity at an extent of 50 m but contribute
significantly to explaining the 3 diversity at an extent of 19 km. Our study advanced this
understanding by utilizing continuous spatial data, demonstrating that the effect of the
topographic heterogeneity began to dominate the spectral 3 diversity at extents as small as
4 ha and grew stronger as the spatial extent increased.

We also found that the elevation, independent of other factors, consistently explained
about 20% of the variation in the spectral 3 diversity across all the spatial extents. This
unique contribution of the elevation dropped to less than 3% when the spectral y diver-
sity was included as a predictor (Figure S7). This underscores “the tangled relationship
between 3 and y diversity” and the importance of considering both in studies of diversity
patterns [64]. One approach addressing this is to use the (3 deviation instead of the raw f3
diversity. We did not model the spectral 3 deviation because of its weak correlation with the
inventory {3 deviation. An alternative approach is to include the y diversity as a predictor
when modeling the 3 diversity [64]. We adopted this approach in our study. The inclusion
of the spectral y diversity as a predictor substantially increased the explained proportion
of the variation in the spectral 3 diversity across all the extents, but it did not alter the
scale-dependent contribution of the topographic heterogeneity (Figure S7), suggesting that
topographic factors affected the 3 diversity through the spatial distribution of species, not
the total number of species in a landscape unit.

5. Conclusions

In summary, our study showcases the potential of using multispectral satellite remote
sensing data to predict the tree 3 diversity and highlights the scale-dependent nature of its
elevational patterns. The spectral 3 diversity showed a marked decline with an increasing
elevation, with the topographic heterogeneity playing a critical role in shaping this gradient,
particularly at spatial extents of 4 ha or greater. The slope and northness were identified as
key drivers, with their influence varying across spatial scales: the impact of the northness
dominated at finer extents, while the slope became more influential at broader extents.
While our results shed light on the effectiveness of using remote sensing techniques to
address difficult questions relating to plant diversity, we acknowledge that the findings
were only derived from one elevational gradient on a subtropical mountain and are far
from conclusive. Further research is needed to confirm and generalize our conclusions.

We envisage three ways in which this study could be further refined and extended.
First, future studies should consider utilizing high-spatial-resolution imagery (such as
airborne hyperspectral data or WorldView-2 satellite imagery) or emerging new remote
sensing techniques to enhance the predictive capability for the 3 diversity and 3 devia-
tion. Second, although our findings have already shown that remote sensing data could
effectively capture the variation in the tree 3 diversity despite the relatively small number
of field survey plots, we acknowledge that a larger sample size could be very helpful in
improving the model’s robustness and predictive power. Third, future studies should aim
to disentangle the relative contributions of other environmental factors, such as soil nutri-
ents and microclimates, while expanding the analysis to larger spatial scales and different
ecosystems to provide a more comprehensive understanding of 3 diversity patterns.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/f16060917 /s1: Figure S1: Locations of the field plots in the
National Natural Reserve of Tianmu Mountain, Zhejiang, China; Figure S2: Relationship between
coefficient of determination (R?) for spectral and inventory B diversities and sample sizes; Figure S3:
Elevational trends in spectral 3 diversity across different spatial extents, derived from single image
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acquired on 10 November 2019; Figure S4: Proportions of variation in spectral § diversity explained
by elevation and topographic heterogeneity for regions at different spatial extents, derived from single
image acquired on 10 November 2019; Figure S5: Methods for generating regions for 3 diversity
mapping; Figure S6: Season-dependent association between various indices of inventory {3 diversity
and spectral 8 diversity; Figure S7: Proportions of variation in spectral § diversity explained by
elevation, spectral y diversity, and topographic heterogeneity for regions at different spatial extents;
Table S1: Spectral information of the 10 Sentinel-2A bands used in this study; Table S2: Selection of
Sentinel-2 images taken from 2019 to 2022 used in this paper.
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